KnightKing: A Fast Distributed Graph Random Walk Engine

Ke Yang1, Mingxing Zhang1,2, Kang Chen1, Xiaosong Ma3, Yang Bai4, Yong Jiang1

1 Tsinghua University, 2 Sangfor, 3 QCRI, 4 4Paradigm
Graph Random Walk

Input
- Graph
- Set of walkers
 - Placed at their starting vertices

Each walker walks around
- By randomly selecting an edge to follow
- For given number of steps or till given termination condition

Output
- Computation during walk, and/or
- Dump set of walk paths
Increasing Significance of Graph Random Walk

Intuitive way of extracting information from graphs

Applications

- Graph embedding
 - DeepWalk
 - node2vec
- Graph neural network
 - PinGraph
 - NetGAN
- Graph processing
 - Graph sampling
 - Vertex ranking

Academia

~1700 papers published in 2018 on random walk
(source: Microsoft Academia)

Industry

Used by major companies

Top Conferences

- ICLR
- KDD
- PARCO
- CISS
- COLT
- NeurIPS
- IPIN
- Big Data
- ICDM
- IJCNN

Academia

- Facebook
- Google
- Alibaba Group
- Twitter
- LinkedIn
- Microsoft
- Amazon
- Pinterest
- Tencent
Different Types of Random Walk Algorithms

Common to all walking algorithms: Sampling one edge according to edge transition probability (usually given in un-normalized manner)

Categories of random walk algorithms:

- **Unbiased**
 - Probability uniform across edges

- **Static**
 - Probability fixed during walk

- **First-order**
 - Walk history-oblivious

- **Biased**
 - Probability varied across edges

- **Dynamic**
 - Probability changes during walk and/or depends on walkers

- **Higher-order**
 - Decision affected by recent steps
Sample Graph Random Walk Algorithms

DeepWalk
- Biased, static, first-order
- Edge transition probability: \(P(e) = \text{weight}(e) \)
- The probability bars at this black vertex correspond to its edges’ thickness

node2vec
- Biased, dynamic, second-order
- Edge transition probability: \(P(e) = \text{weight}(e) \cdot \alpha_{pq} \)
- Transition probability \((p = 0.5, \ q = 2)\)
 - Favoring return edge over new neighborhood

\[\alpha_{pq}(t, x) = \begin{cases}
1/p, & \text{if } d_{tx} = 0 \\
1, & \text{if } d_{tx} = 1 \\
1/q, & \text{if } d_{tx} = 2
\end{cases} \]

Three cases for \(\alpha \): depends on other end of edge: (1) \(\bullet \) (2) \(\bigcirc \) (3) \(\bigotimes \) (4) \(\bigotimes \)

\(p \) and \(q \) constant hyper-parameters
Edge Sampling Can Be Expensive

- Edge sampling is essentially bulk of work

- Dynamic walk: spend lot of time on edge scans
 - To re-compute edge probability distributions
 - Save time by pre-computing and caching all possible transition probabilities?

- Real-world graphs have **highly skewed degree distribution**
 - Small subset of vertices attract majority of edges
 - These hot spots become “walker traps”: super easy to step in, very hard to walk out

<table>
<thead>
<tr>
<th>Graph</th>
<th>Vertices</th>
<th>Edges (undirected)</th>
<th>Graph size</th>
<th>Index storage</th>
<th>Degree mean</th>
<th>Degree variance</th>
<th>Avg. # of edges checked per step</th>
</tr>
</thead>
<tbody>
<tr>
<td>Twitter</td>
<td>41.7M</td>
<td>2.93B</td>
<td>22GB</td>
<td>980TB</td>
<td>70.4</td>
<td>6.4E6</td>
<td>92202</td>
</tr>
<tr>
<td>UK-Union</td>
<td>134M</td>
<td>9.39B</td>
<td>70GB</td>
<td>1481TB</td>
<td>70.3</td>
<td>3.0E6</td>
<td>47790</td>
</tr>
</tbody>
</table>

Pre-compute for node2vec
Our Work: Fast Graph Random Walk Engine

- **KnightKing**: effortlessly coordinates millions of walkers on large graphs
- First general-purpose engine for graph random walk
 - To enable algorithm expression: Unified edge transition probability definition
 - To speedup walks: Rejection-based, fast and exact edge sampling
 - For programmers: Walker-centric programming model
 - Common optimizations for different random walk algorithms
- Distributed
 - Scale out if needed
- Available at
 - github.com/KnightKingWalk
Unified Transition Probability Definition

- Key idea: decompose the probability definition to separate static and dynamic components
 - Static: reflecting input graph properties, stays constant
 - Dynamic: reflecting walker preferences or states

- Examples

DeepWalk

Edge transition probability:

\[P(e) = \text{weight}(e) \]

\[P = \text{weight}(e) \cdot P_{\text{et}} \cdot P_e \]

(node2vec)

Edge transition probability:

\[P(e) = \alpha_{pq} \cdot \text{weight}(e) \]

\[P = \text{weight}(e) \cdot \alpha_{pq} \cdot P_e \]

- \(\alpha_{pq} \): depends on both graph topology and walk history
 - \(\alpha_{pq}(t, x) = \begin{cases} 1/p, & \text{if } d_{tx} = 0 \\ 1, & \text{if } d_{tx} = 1 \\ 1/q, & \text{if } d_{tx} = 2 \end{cases} \)
Static Walk: Edge Scan Once and For All

- Do edge scan only once, at beginning of run (pre-processing), followed by quick sampling

- KnightKing adopts existing approaches
 - Inverse Transform Sampling (ITS)
 - Uniform sampling in 1-D space, corresponding to per-edge probabilities
 - $O(n)$ time and space to build index array
 - $O(\log(n))$ time to sample edge using binary search
 - Alias Method (see paper for details)
 - A more sophisticated alias table: Splitting per-page probabilities into pieces and construct equal-sum buckets
 - Uniform sampling of buckets, weighted sampling of edges within
 - $O(n)$ time and space to build alias table
 - $O(1)$ time to sample edge
Eliminating Edge Scans During Dynamic Walk

- **Key idea:** rejection sampling
 - Old way: survey *all edges*, pluck one with appropriate probability
 - Now: sample first, then check *that and only that edge*

- **Correctness:** the probability of the edges being sampled is equivalent to the relative height of their bars.

- **Efficiency:** reduce sampling overhead, linear scan \((O(|E_v|)) \Rightarrow constant level \((O(1))\)

- **Incorporating static component:**
 - \(P_s\) determines *widths* of bars
 - \(P_d\) determines *heights* of bars

![Envelope function](image)

2-D sampling area (rectangular dartboard)

- Rejected: walker has to throw again
- Accepted: walker traverses the accepted edge

Coordinates \((x,y)\) of each trial
- \(x\): lookup using ITS or alias method
- \(y\): check using rejection sampling

Do we have to go through all edges to sample one? Answer is no!
Optimization: More Efficient Dartboard (I)

- Performance depends on **efficiency of dartboard**
 - Tighter envelop, smaller white area, fewer trials
 - Bad case: very few tall outliers push up entire envelope
 - Worse for high-degree vertices
 - E.g., node2vec, assigns high probability to single “return edge”

- KnightKing optimization: **folding**
 - Optional APIs to identify transition probability outliers

- Cut outliers, put cropped segments to right side of board as **appendix area**
- Lower down envelope
Optimization: More Efficient Dartboard (II)

- Super tight envelope good? Wasteful too!
 - NightKing never builds physical dartboard
 - After each trial, edge sampled, dynamic compute bar height
 - Could involve inter-node communication, expensive!

- KnightKing optimization: *lower-bound based early acceptance*
 - Optional APIs to mark global lower-bound
 - Most darts hit below lower-bound line

![Diagram](https://via.placeholder.com/150)

- Dart hits below lower-bound: accept sample without checking bar height
- Global lower-bound
Walker-centric Programming Model and APIs

Graph engines: vertex-centric

- Vertex states
 - Initial
 - How to update

- Actions (update propagation)
 - Message content generation
 - State update upon receiving message
 - User-optional optimization
 • Enable push/pull hybrid mode (optional)
 - Transparent optimizations by framework

- Termination condition

Random walk engine: walker-centric

- Walker states
 - # of walkers
 - Start positions and initial states

- Actions (walk)
 - Edge transition probability
 • Static and dynamic
 • Envelope for rejection sampling
 - Queries for higher-order walks
 - User-optional optimization
 • Outlier, lower-bound specification
 - Transparent optimizations by framework

- Termination condition
System Design and Implementation

- C++, core code about 2500 lines

- Design choices
 - BSP computation model, 1-D graph partitioning, CSR for in-memory graph storage, OpenMPI for message passing
 - Pipeline and scheduling optimizations specifically targeting distributed graph random walk (see paper for details)
 - Straggler problem
 - Different walk speed
 - More severe imbalance

![Graph showing comparison between BFS and node2vec](chart.png)
Evaluation Setup

- **Environment**
 - 8-node cluster with 40Gbps InfiniBand interconnection
 - Each node has 2 8-core 2GHz Intel Xeon, 20MB L3 cache, and 94GB DRAM

- **Dataset**
 - 4 real world graphs
 - Synthetic graphs with different metrics

- **Applications**
 - DeepWalk, Personalized PageRank, meta-path random walk, node2vec

- **Baseline**
 - Implement prior sample methods with full-edge-scan on Gemini [OSDI16]
 - significantly out-performs existing available single-algorithm random walk implementations
Benchmark and Overall Performance

<table>
<thead>
<tr>
<th>Graph</th>
<th>LiveJournal</th>
<th>Friendster</th>
<th>Twitter</th>
<th>UK-Union</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertices</td>
<td>4.85M</td>
<td>70.2M</td>
<td>41.7M</td>
<td>134M</td>
</tr>
<tr>
<td>Edges</td>
<td>69.0M</td>
<td>1.81B</td>
<td>1.47B</td>
<td>5.51B</td>
</tr>
<tr>
<td>Degree Variance</td>
<td>2.72E3</td>
<td>1.62E4</td>
<td>6.42E6</td>
<td>3.04E6</td>
</tr>
</tbody>
</table>

Our 4 test datasets

DeepWalk on weighted graph
(|V| walkers, 80 steps each)

node2vec on weighted graph (base-10 log scale)
(|V| walkers, 80 steps each)

Total run time

Gemini
KnightKing

22 days
3 minutes
Graph Topology Sensitivity

KnightKing *insensitive to graph topology*, unlike existing method

<table>
<thead>
<tr>
<th>Graph</th>
<th>Vertices</th>
<th>Degree mean</th>
<th>Degree variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Truncated power-law</td>
<td>10 M</td>
<td>51~159</td>
<td>3.4E2~7.1E5</td>
</tr>
<tr>
<td>Several popular vertices</td>
<td>10 M</td>
<td>100~101</td>
<td>2.0E5~1.0E6</td>
</tr>
</tbody>
</table>

Fast growing overhead as graph grows skewed

Node2vec sampling overhead on synthetic graphs: average number of edges examined, per walker per step

Just a few hot vertices, walkers move much slower

KnightKing pays near-constant overhead (0.8 edge examined w. optimizations)
Conclusion

- Dynamic, higher-order walks not as expensive as people previously believed
 - Exact, constant-time sampling possible with rejection sampling

- People could use general-purpose random walk engine
 - Just like we use graph engines
 - Easy algorithm implementation, common optimizations
 - Hidden communication/scheduling details

Check out at github.com/KnightKingWalk

Thank you!