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Motivation for split annotations
Modern data analytics applications combine many disjoint 
processing libraries & functions

+ Great results leveraging 1000s of functions
– No end-to-end optimization across function calls

(prior work: up to 30x performance left on table)
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Why is calling existing APIs slow?
One major reason: on modern hardware, processing 
speeds have outpaced memory speeds
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// From Black Scholes
// all inputs are vectors
d1 = price * strike
d1 = np.log2(d1) + strike

multiply

log2

add

Data movement is often dominant 
bottleneck in composing existing functions 



Existing ideas for optimizing E2E applications 
under high-level APIs
Researchers have proposed JIT compilers and 
runtimes to optimize code on a per-app basis.

Examples
TensorFlow XLA, TorchScript, Weld, Numba, Bohrium

Weld Bohrium



JIT compilers improve E2E performance
Compilers fuse operators during compilation to 
reduce data movement.
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JIT compilers improve E2E performance
Compilers fuse operators during compilation to 
reduce data movement.
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// From Black Scholes
// all inputs are vectors
d1 = price * strike
d1 = np.log2(d1) + strike

multiply, 
log2, add

Up to 30x speedups from data movement 
optimizations such as loop fusion [Weld, XLA]



Problem: Huge Developer Effort

•Need to replace every function to use compiler 
intermediate representation (IR)
• IR may not even support all optimizations present 

in hand-optimized code

Example
Weld needs 1000s of LoC to support NumPy, Pandas

JIT compiler from our 
research group!
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“Sorry, our 
compiler doesn’t 
recognize this 
pattern yet”

“Some ops are 
expected to be slower 
compared to hand-
optimized kernels”



Can we obtain similar speedups to JIT 
compilers with only existing functions? 
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Split Annotations (SAs)

Data movement optimizations + parallelization 
of existing APIs without library code changes!
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SAs Enable Pipelining + Parallelism

Key idea: split data to pipeline and parallelize it.
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graph, keep 
data in cache 
by passing 
cache-sized 
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functions.
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SAs Enable Pipelining + Parallelism

With SAs:

d1

price

strike

Thread 1 Thread 2 Thread N

Parallelize over split pieces

Build 
execution 
graph, keep 
data in cache 
by passing 
cache-sized 
splits to 
functions.



Example of a split annotation for MKL

@sa(n: SizeSplit(n, K), a: ArraySplit(n, K),
b: ArraySplit(n, K), out: ArraySplit(n, K))

// Computes out[i] = a[i] + b[i] element-wise
void vdAdd(int n, double *a, double *b, double *out)
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Benefits compared to JIT compilers:
+ No intrusive library code changes
+ Reuses optimized library function implementations
+ Does not require access to library code



SAs can sometimes outperform compilers

5x speedups by reducing 
data movement
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Challenges in designing SAs

1. Defining how to split data and enforcing safe pipelining

2. Building a lazy task graph transparently

3. Designing a runtime to execute tasks in parallel
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See paper for 
implementation details!



How do SAs enforce safe pipelining?

E.g., preventing pipelining between matrix functions that 
iterate over row vs. over column:

Okay to pipeline – split 
matrix by row,  pass 
rows to function.

Cannot pipeline –
second function reads 
incorrect values.



SAs use a type system to enforce safe pipelining

A split type uniquely defines how to split function arguments 
and return values.

@sa(n: SizeSplit(n, K), a: ArraySplit(n, K),
b: ArraySplit(n, K), out: ArraySplit(n, K))

void vdAdd(int n, double *a, double *b, double *out)
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SAs use a type system to enforce safe pipelining

A split type uniquely defines how to split function arguments 
and return values.

@sa(n: SizeSplit(n, K), a: ArraySplit(n, K),
b: ArraySplit(n, K), out: ArraySplit(n, K))

void vdAdd(int n, double *a, double *b, double *out)
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ArraySplit depends on function arg.  n, the runtime 
size of an array, and K, the number of pieces.



Same split types = values can be pipelined

An SA defines a unique “splitting” for a value using a primitive 
called a split type.

@sa(n: SizeSplit(n, K), a: ArraySplit(n, K),
b: ArraySplit(n, K), out: ArraySplit(n, K))

void vdAdd(int n, double *a, double *b, double *out)

Same split types enforce values split in the same way: we can 
pipeline if data between functions has matching split types.

28



Example: Matrix Pipelining in NumPy 

Split type for NumPy matrices encodes dimension + axis:
MatrixSplit(Rows, Cols, Axis, K)

Split types match: axis=0 
for both function calls

Split types don’t match: axis=0 
for first call, axis=1 for second call

normalize(
m, axis=0)

reduce(
m, axis=0)

normalize(
m, axis=0)

reduce(
m, axis=1)



How an annotator writes SAs

1. Define a split type (e.g., ArraySplit, MatrixSplit)

2. Write a split function and merge function for the type

3. Annotate functions using the defined split types
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Mozart: Our system implementing SAs
User Application Annotations

Existing library

Wrapped Library

y = lib.f();
z = lib.g(y);

Mozart Runtime
Check + initialize split types, split 
data, execute functions in parallelT1 T2 T3

Mozart Client Library
Builds a lazily evaluated task graph, 
determines when to execute itf() g()
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In C++: Memory protection for lazy evaluation
In Python: Meta-programming for lazy evaluation

See paper for details!
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Results
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Results

Setup: EC2 m4.10xlarge (160GB memory, 40 vCPUs) running 
Linux.

Questions:
1. What kinds of workloads can SAs accelerate?
2. How much effort is required to use SAs vs. compilers?
3. How do SAs perform compared to JIT compilers?
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Data Types and Libraries Demonstrated

Libraries: L1 + L2 BLAS (MKL), NumPy, Pandas, spaCy, 
ImageMagick

Data types and operators: Arrays, Tensors, Matrices, 
DataFrame joins, grouping aggregations, image processing 
algorithms, functional operators (map, reduce, etc.)
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SAs require less integration effort than 
compilers
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SAs can match JIT compilers under existing APIs
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SAs can accelerate highly optimized libraries
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Across the 15 workloads we benchmarked:

SAs perform within 1.2x of all compilers in nine workloads

SAs outperform all compilers in four workloads

Compilers outperform SAs by >1.2x in two workloads
• Up to 6x slower: This happens when code generation (e.g., 

compiling interpreted Python) matters
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See paper for more details!



Conclusion

Contact:
shoumik@cs.stanford.edu
https://www.shoumik.xyz 

Split Annotations:
• Enable order-of-magnitude speedups over existing APIs
• Require less than 10x LoC to use compared to compilers
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https://www.github.com/weld-project/split-annotations


