Split Annotations

Optimizing Data-Intensive Computations in Existing Libraries

Shoumik Palkar and Matei Zaharia

Motivation for split annotations

Modern data analytics applications combine many disjoint processing librariés & functions

- + Great results leveraging 1000s of functions
- No end-to-end optimization across function calls (prior work: up to **30x** performance left on table)

Why is calling existing APIs slow?

One major reason: on modern hardware, processing speeds have outpaced memory speeds

```
// From Black Scholes
// all inputs are vectors
d1 = price * strike
d1 = np.log2(d1) + strike
```


Existing ideas for optimizing E2E applications under high-level APIs

Researchers have proposed **JIT compilers** and **runtimes** to optimize code on a per-app basis.

Examples

TensorFlow XLA, TorchScript, Weld, Numba, Bohrium

JIT compilers improve E2E performance

Compilers fuse operators during compilation to reduce data movement.

```
// From Black Scholes
// all inputs are vectors
d1 = price * strike
d1 = np.log2(d1) + strike
```


JIT compilers improve E2E performance

Compilers fuse operators during compilation to reduce data movement.

```
// From Black Scholes
// all inputs are vectors
d1 = price * strike
d1 = np.log2(d1) + strike
```


Up to 30x speedups from data movement optimizations such as loop fusion [Weld, XLA]

Problem: Huge Developer Effort

- Need to replace every function to use compiler intermediate representation (IR)
- IR may not even support all optimizations present in hand-optimized code

Example

Weld needs 1000s of LoC to support NumPy, Pandas

JIT compiler from our research group!

Numba compilation error #3293

ajaychat3 opened this issue on Sep 7, 2018 · 2

TypingError
<ipython-input-98-845f112395cc> in <m
30 param grid1=[]</pre>

"Sorry, our compiler doesn't recognize this pattern yet"

Tensorflow XLA makes it slower?

Asked 2 years, 4 months ago Active 2 years, 4 months ago Viewed 569 times

I am writing a very simple tensorflow program with XLA enabled. B

1

import tensorflow as tf

def ChainSoftMax(x, n)
 tensor = tf.nn.softmax(x)
 for i in range(n-1):

"Some ops are expected to be slower compared to hand-optimized kernels"

Can we obtain similar speedups to JIT compilers with only **existing functions**?

Split Annotations (SAs)

Data movement optimizations + parallelization of existing APIs without library code changes!

Key idea: split data to pipeline and parallelize it.

Without SAs:

```
d1
price
strike
```

```
d1 = price * strike
d1 = np.log2(d1) + strike
```

Without SAs:

```
d1

price

strike
```

```
d1 = price * strike
d1 = np.log2(d1) + strike ←
```

With SAs:

```
d1

price

strike
```

```
d1 = price * strike
d1 = np.log2(d1) + strike
```

With SAs:

Build execution graph, **keep data in cache** by passing cache-sized splits to functions.

```
d1 = price * strike
d1 = np.log2(d1) + strike
```

With SAs:

Collectively fit in cache

Build execution graph, **keep data in cache** by passing cache-sized splits to functions.

With SAs:

Build execution graph, **keep data in cache** by passing cache-sized splits to functions.

Collectively fit in cache

With SAs:

Build execution graph, **keep data in cache** by passing cache-sized splits to functions.

```
d1 = price * strike
d1 = np.log2(d1) + strike
```

With SAs:

Build execution graph, **keep data in cache** by passing cache-sized splits to functions.

```
d1 = price * strike
d1 = np.log2(d1) + strike
```

With SAs:

Build execution graph, **keep data in cache** by passing cache-sized splits to functions.

Parallelize over split pieces

Example of a split annotation for MKL

Benefits compared to JIT compilers:

- + No intrusive library code changes
- + Reuses optimized library function implementations
- + Does not require access to library code

SAs can sometimes outperform compilers

Challenges in designing SAs

- 1. Defining how to split data and enforcing **safe** pipelining
- 2. Building a lazy task graph transparently
- 3. Designing a **runtime** to execute tasks in parallel

Challenges in designing SAs

- 1. Defining how to split data and enforcing safe pipelining
- 2. Building a lazy task graph transparently
- 3. Designing a runtime to execute tasks in parallel

See paper for implementation details!

How do SAs enforce safe pipelining?

E.g., preventing pipelining between matrix functions that iterate over row vs. over column:

Okay to pipeline – split matrix by row, pass rows to function.

Cannot pipeline – second function reads incorrect values.

SAs use a type system to enforce safe pipelining

A **split type** uniquely defines how to split function arguments and return values.

SAs use a type system to enforce safe pipelining

A **split type** uniquely defines how to split function arguments and return values.

ArraySplit depends on function arg. n, the runtime size of an array, and K, the number of pieces.

Same split types = values can be pipelined

An SA defines a unique "splitting" for a value using a primitive called a **split type**.

Same split types enforce values split in the same way: we can pipeline if data between functions has matching split types.

Example: Matrix Pipelining in NumPy

Split type for NumPy matrices encodes dimension + axis:

MatrixSplit(Rows, Cols, Axis, K)

Split types match: axis=0 for both function calls

Split types don't match: axis=0
for first call, axis=1 for second call

How an annotator writes SAs

- 1. Define a split type (e.g., ArraySplit, MatrixSplit)
- 2. Write a **split function** and **merge function** for the type
- 3. Annotate functions using the defined split types

Mozart: Our system implementing SAs

Mozart: Our system implementing SAs

In C++: Memory protection for lazy evaluation

In Python: Meta-programming for lazy evaluation

See paper for details!

Mozart: Our system implementing SAs

Results

Results

Setup: EC2 m4.10xlarge (160GB memory, 40 vCPUs) running Linux.

Questions:

- 1. What kinds of workloads can SAs accelerate?
- 2. How much effort is required to use SAs vs. compilers?
- 3. How do SAs perform compared to JIT compilers?

Data Types and Libraries Demonstrated

Libraries: L1 + L2 BLAS (MKL), NumPy, Pandas, spaCy, **ImageMagick**

Data types and operators: Arrays, Tensors, Matrices, DataFrame joins, grouping aggregations, image processing algorithms, functional operators (map, reduce, etc.)

SAs require less integration effort than compilers

		LoC for SAs			LoC for Weld		
Library	#Funcs	SAs	Split. API	Total	Weld IR	Glue	Total
NumPy	84	47	37	84	321	73	394
Pandas	15	72	49	121	1663	413	2076
spaCy	3	8	12	20			
MKL	81	74	90	155			
ImageMagick	15	49	63	112			

SAs can match JIT compilers under existing APIs

 $\mathsf{pandas}_{y_{it} = \beta' x_{it} + \mu_i + \epsilon_{it}}$

Birth Analysis: 4.7x speedup over pandas

SAs can accelerate highly optimized libraries

Image filter: 1.8x speedup over ImageMagick

Across the 15 workloads we benchmarked:

SAs perform within 1.2x of all compilers in nine workloads

SAs outperform all compilers in four workloads

Compilers outperform SAs by >1.2x in two workloads

• Up to **6x slower:** This happens when code generation (e.g., compiling interpreted Python) matters

See paper for more details!

Conclusion

Split Annotations:

- Enable order-of-magnitude speedups over existing APIs
- Require less than 10x LoC to use compared to compilers

https://www.github.com/weld-project/split-annotations

Contact:

shoumik@cs.stanford.edu https://www.shoumik.xyz

