
Split Annotations
Optimizing Data-Intensive Computations in Existing Libraries

Shoumik Palkar and Matei Zaharia

1

Motivation for split annotations
Modern data analytics applications combine many disjoint
processing libraries & functions

+ Great results leveraging 1000s of functions
– No end-to-end optimization across function calls

(prior work: up to 30x performance left on table)

2

Why is calling existing APIs slow?
One major reason: on modern hardware, processing
speeds have outpaced memory speeds

3

// From Black Scholes
// all inputs are vectors
d1 = price * strike
d1 = np.log2(d1) + strike

multiply

log2

add

Data movement is often dominant
bottleneck in composing existing functions

Existing ideas for optimizing E2E applications
under high-level APIs
Researchers have proposed JIT compilers and
runtimes to optimize code on a per-app basis.

Examples
TensorFlow XLA, TorchScript, Weld, Numba, Bohrium

Weld Bohrium

JIT compilers improve E2E performance
Compilers fuse operators during compilation to
reduce data movement.

5

// From Black Scholes
// all inputs are vectors
d1 = price * strike
d1 = np.log2(d1) + strike

multiply

log2

add

JIT compilers improve E2E performance
Compilers fuse operators during compilation to
reduce data movement.

6

// From Black Scholes
// all inputs are vectors
d1 = price * strike
d1 = np.log2(d1) + strike

multiply,
log2, add

Up to 30x speedups from data movement
optimizations such as loop fusion [Weld, XLA]

Problem: Huge Developer Effort

•Need to replace every function to use compiler
intermediate representation (IR)
• IR may not even support all optimizations present

in hand-optimized code

Example
Weld needs 1000s of LoC to support NumPy, Pandas

JIT compiler from our
research group!

8

“Sorry, our
compiler doesn’t
recognize this
pattern yet”

“Some ops are
expected to be slower
compared to hand-
optimized kernels”

Can we obtain similar speedups to JIT
compilers with only existing functions?

9

Split Annotations (SAs)

Data movement optimizations + parallelization
of existing APIs without library code changes!

10

SAs Enable Pipelining + Parallelism

Key idea: split data to pipeline and parallelize it.

SAs Enable Pipelining + Parallelism

Without SAs:

d1 = price * strike
d1 = np.log2(d1) + strike

price

strike

d1

SAs Enable Pipelining + Parallelism

Without SAs:

d1 = price * strike
d1 = np.log2(d1) + strike

price

strike

d1

SAs Enable Pipelining + Parallelism

With SAs:

d1

price

strike

d1 = price * strike
d1 = np.log2(d1) + strike

SAs Enable Pipelining + Parallelism

With SAs:

d1

price

strike

Build
execution
graph, keep
data in cache
by passing
cache-sized
splits to
functions.

d1 = price * strike
d1 = np.log2(d1) + strike

SAs Enable Pipelining + Parallelism

With SAs:

d1

price

strike

d1 = price * strike
d1 = np.log2(d1) + strike

Build
execution
graph, keep
data in cache
by passing
cache-sized
splits to
functions.

Collectively fit in cache

SAs Enable Pipelining + Parallelism

With SAs:

d1

price

strike

d1 = price * strike
d1 = np.log2(d1) + strike

Build
execution
graph, keep
data in cache
by passing
cache-sized
splits to
functions.

Collectively fit in cache

SAs Enable Pipelining + Parallelism

With SAs:

d1

price

strike

d1 = price * strike
d1 = np.log2(d1) + strike

Build
execution
graph, keep
data in cache
by passing
cache-sized
splits to
functions.

SAs Enable Pipelining + Parallelism

With SAs:

d1

price

strike

d1 = price * strike
d1 = np.log2(d1) + strike

Build
execution
graph, keep
data in cache
by passing
cache-sized
splits to
functions.

SAs Enable Pipelining + Parallelism

With SAs:

d1

price

strike

Thread 1 Thread 2 Thread N

Parallelize over split pieces

Build
execution
graph, keep
data in cache
by passing
cache-sized
splits to
functions.

Example of a split annotation for MKL

@sa(n: SizeSplit(n, K), a: ArraySplit(n, K),
b: ArraySplit(n, K), out: ArraySplit(n, K))

// Computes out[i] = a[i] + b[i] element-wise
void vdAdd(int n, double *a, double *b, double *out)

21

Benefits compared to JIT compilers:
+ No intrusive library code changes
+ Reuses optimized library function implementations
+ Does not require access to library code

SAs can sometimes outperform compilers

5x speedups by reducing
data movement

1

10

100

1 4 16

Ru
nt

im
e

(s
)

Threads

MKL Weld MKL+SAs

Black Scholes using Intel MKL

Challenges in designing SAs

1. Defining how to split data and enforcing safe pipelining

2. Building a lazy task graph transparently

3. Designing a runtime to execute tasks in parallel

23

Challenges in designing SAs

1. Defining how to split data and enforcing safe pipelining

2. Building a lazy task graph transparently

3. Designing a runtime to execute tasks in parallel

24

See paper for
implementation details!

How do SAs enforce safe pipelining?

E.g., preventing pipelining between matrix functions that
iterate over row vs. over column:

Okay to pipeline – split
matrix by row, pass
rows to function.

Cannot pipeline –
second function reads
incorrect values.

SAs use a type system to enforce safe pipelining

A split type uniquely defines how to split function arguments
and return values.

@sa(n: SizeSplit(n, K), a: ArraySplit(n, K),
b: ArraySplit(n, K), out: ArraySplit(n, K))

void vdAdd(int n, double *a, double *b, double *out)

26

SAs use a type system to enforce safe pipelining

A split type uniquely defines how to split function arguments
and return values.

@sa(n: SizeSplit(n, K), a: ArraySplit(n, K),
b: ArraySplit(n, K), out: ArraySplit(n, K))

void vdAdd(int n, double *a, double *b, double *out)

27

ArraySplit depends on function arg. n, the runtime
size of an array, and K, the number of pieces.

Same split types = values can be pipelined

An SA defines a unique “splitting” for a value using a primitive
called a split type.

@sa(n: SizeSplit(n, K), a: ArraySplit(n, K),
b: ArraySplit(n, K), out: ArraySplit(n, K))

void vdAdd(int n, double *a, double *b, double *out)

Same split types enforce values split in the same way: we can
pipeline if data between functions has matching split types.

28

Example: Matrix Pipelining in NumPy

Split type for NumPy matrices encodes dimension + axis:
MatrixSplit(Rows, Cols, Axis, K)

Split types match: axis=0
for both function calls

Split types don’t match: axis=0
for first call, axis=1 for second call

normalize(
m, axis=0)

reduce(
m, axis=0)

normalize(
m, axis=0)

reduce(
m, axis=1)

How an annotator writes SAs

1. Define a split type (e.g., ArraySplit, MatrixSplit)

2. Write a split function and merge function for the type

3. Annotate functions using the defined split types

30

Mozart: Our system implementing SAs
User Application Annotations

Existing library

Wrapped Library

y = lib.f();
z = lib.g(y);

Mozart Runtime
Check + initialize split types, split
data, execute functions in parallelT1 T2 T3

Mozart Client Library
Builds a lazily evaluated task graph,
determines when to execute itf() g()

Mozart: Our system implementing SAs
User Application Annotations

Existing library

Wrapped Library

y = lib.f();
z = lib.g(y);

Mozart Runtime
Check + initialize split types, split
data, execute functions in parallelT1 T2 T3

Mozart Client Library
Builds a lazily evaluated task graph,
determines when to execute itf() g()

In C++: Memory protection for lazy evaluation
In Python: Meta-programming for lazy evaluation

See paper for details!

Mozart: Our system implementing SAs
User Application Annotations

Existing library

Wrapped Library

y = lib.f();
z = lib.g(y);

Mozart Runtime
Check + initialize split types, split
data, execute functions in parallelT1 T2 T3

Mozart Client Library
Builds a lazily evaluated task graph,
determines when to execute itf() g()

Results

34

Results

Setup: EC2 m4.10xlarge (160GB memory, 40 vCPUs) running
Linux.

Questions:
1. What kinds of workloads can SAs accelerate?
2. How much effort is required to use SAs vs. compilers?
3. How do SAs perform compared to JIT compilers?

35

Data Types and Libraries Demonstrated

Libraries: L1 + L2 BLAS (MKL), NumPy, Pandas, spaCy,
ImageMagick

Data types and operators: Arrays, Tensors, Matrices,
DataFrame joins, grouping aggregations, image processing
algorithms, functional operators (map, reduce, etc.)

36

SAs require less integration effort than
compilers

37

SAs can match JIT compilers under existing APIs

10

100

1 4 16

Ru
nt

im
e

(s
)

Threads

NumPy Bohrium
Weld Numba
NumPy+SAs

nBody simulation: 4.6x
speedup over NumPy

10

100

1 4 16

Ru
nt

im
e

(s
)

Threads

Pandas Weld Pandas+SAs

Birth Analysis: 4.7x
speedup over pandas

SAs can accelerate highly optimized libraries

1

10

100

1 4 16

Ru
nt

im
e

(s
)

Threads

MKL Weld MKL+SAs

Black Scholes: 5x
speedup over MKL

Image filter: 1.8x speedup
over ImageMagick

1

10

100

1000

1 4 16

Ru
nt

im
e

(s
)

Threads

ImageMagick ImageMagick+SAs

Across the 15 workloads we benchmarked:

SAs perform within 1.2x of all compilers in nine workloads

SAs outperform all compilers in four workloads

Compilers outperform SAs by >1.2x in two workloads
• Up to 6x slower: This happens when code generation (e.g.,

compiling interpreted Python) matters

40

See paper for more details!

Conclusion

Contact:
shoumik@cs.stanford.edu
https://www.shoumik.xyz

Split Annotations:
• Enable order-of-magnitude speedups over existing APIs
• Require less than 10x LoC to use compared to compilers

41

https://www.github.com/weld-project/split-annotations

