
TASO: Optimizing Deep Learning with
Automatic Generation of Graph Substitutions

Zhihao Jia, Oded Padon, James Thomas, Todd Warszawski,
Matei Zaharia, and Alex Aiken

Stanford University

111/4/19

Current Rule-based DNN Optimizations

2

conv3x3
+ relu

conv1x1
+ relu

Input

conv3x3

add

relu

…

Rule-based Optimizer

conv3x3 conv1x1

Input

conv3x3

add

relu

relu relu

Computation Graph Optimized Graph

Fuse conv + relu

conv

relu

conv
+ relu

3

Fuse conv + relu

Fuse conv +
batch normalization

Fuse multi. convs

…

Current Rule-based DNN Optimizations

Rule-based Optimizer

TensorFlow currently
includes ~200 rules

(~53,000 LOC)

Limitations of Rule-based Optimizations

When I turned on XLA (TensorFlow’s graph optimizer), the
training speed is about 20% slower.

With XLA, my program is almost 2x slower than
without XLA

Robustness
Experts’ heuristics do not

apply to all DNNs/hardware

4

Limitations of Rule-based Optimizations

Robustness
Experts’ heuristics do not

apply to all DNNs/hardware

Scalability
New operators and graph

structures require more rules

TensorFlow currently uses ~4K
LOC to optimize convolution

5

Limitations of Rule-based Optimizations

Robustness
Experts’ heuristics do not

apply to all DNNs/hardware

Scalability
New operators and graph

structures require more rules

Performance
Miss subtle optimizations for

specific DNNs/hardware

6

Motivating Example

Conv3x3
+ Relu

Conv1x1
+ Relu

Input

Conv3x3

Add

Relu

Conv3x3
+ Relu

Conv3x3
+ Relu

Input

Conv3x3

Add

Relu

Enlarge
convs

Conv3x3
+ Relu

Input

Conv3x3

Add

Relu

Split

Fuse
convs

Fuse
conv & add

The final graph is 30% faster on V100 but 10% slower on K80.

Conv3x3
+ Relu

Input

Conv3x3
+ Relu

Fuse
conv & relu

Conv3x3
+ Relu

Input

Conv3x3

Relu

7

8

DNN Graph
Optimizations

DNN
Operators

Graph
Architectures

Hardware
Backends

How should we address the complexity of
designing DNN graph optimizations?

TASO: Tensor Algebra SuperOptimizer

• Key idea: replace manually-designed graph optimizations with automated
generation and verification of graph substitutions for deep learning

• Less engineering effort: 53,000 LOC for manual graph optimizations in
TensorFlow → 1,400 LOC in TASO

• Better performance: outperform existing optimizers by up to 2.8x

9

Graph Substitution

10

Conv3x3

W1 X W2

Conv3x3

Concat

Conv3x3

W1 W2 X

Y1 Y2 Split

Y1 Y2

TASO Workflow

11

Operator
Specifications

Graph
Subst.

Generator

Graph
Subst.
Verifier

Candidate
Substitutions

Verified
Substitutions

Graph
Optimizer… …

TASO Workflow

12

Input Comp.
Graph

Search-Based
Graph Optimizer

…

Verified Substitutions

Optimized
Comp. Graph

Key Challenges

1. How to generate potential substitutions?

2. How to verify their correctness?

Graph fingerprints

Operator specifications + theorem prover

13

Graph Substitution Generator

Enumerate all possible subgraphs up to a
fixed size using available operators

14

~66M graphs with up to 4 operators

Graph Substitution Generator

I1

IK

…

O1

OK

… O1

OK

… O1

OK

… O1

OK

… O1

OK

… O1

OK
… O1

OK

… O1

OK

…

Compute output fingerprints
with random input tensors

15

Graph Substitution Generator

I1

IK

…

O1

OK

… O1

OK

… O1

OK

… O1

OK

… O1

OK

… O1

OK
… O1

OK

… O1

OK

…

Pairs of graphs with identical
fingerprint are candidate substitutions

16

Graph Substitution Generator

17

TASO generates ~29,000 substitutions by
enumerating graphs w/ up to 4 operators

743 substitutions remain after applying
pruning techniques to eliminate redundancy

Graph Substitution Verifier

18

… Graph Subst.
Verifier

…

Candidate
Substitutions

Verified
Substitutions

P1. conv is distributive
over concatenation
P2. conv is bilinear
…
Pn.

Operator
Specifications

∀",$%, $& .
()*+ ", ()*,-. $%, $& =
()*,-. ()*+(", $%), ()*+ ",$&

Verification Workflow

19

∃", $%, $& .
()*+ ", $%), ()*+(", $&
≠ 4567. ()*+ ", ()*,-. $%, $&

Conv

W1 X W2

Conv

Concat

Conv

W1 W2 X

Y1 Y2 Split

Y1 Y2

(Conv(x,	w1),	Conv	(x,	w2)) Split(Conv(x,	Concat(w1,	w2)))

Theorem
ProverP1. ∀", $%, $& .

()*+ ", ()*,-. $%, $& =
()*,-. ()*+(", $%), ()*+ ", $&

P2. …

Operator Specifications

UNSAT

Verification Effort

20

TASO generates all 743 substitutions in 5 minutes, and
verifies them against 43 operator properties in 10 minutes

Supporting a new operator requires a few hours of human
effort to discover its properties

Operator specifications in TASO ≈ 1,400 LOC
Manual graph optimizations in TensorFlow ≈ 53,000 LOC

Search-Based Graph Optimizer (MetaFlow [SysML19])

• Goal: applying verified substitutions to obtain an optimized graph

• Cost model
• Based on the sum of individual operators’ cost
• Measure the cost of each operator on hardware

• Cost-based backtracking search
• Backtrack local optimal solutions
• Optimizing a DNN model takes less than 10 minutes

21

End-to-end Inference Performance (V100 GPU w/ cuDNN)

0

3

6

9

12

15

ResNet-50 NasNet-A ResNeXt-50 NasRNN BERT-Large

R
un

tim
e(

m
s)

TensorFlow TensorRT MetaFlow TASO

1.3x

1.0x
2.8x 1.4x

1.4x

22

Competitive on
standard models

Larger speedups on
emerging models

Similar speedups on the TVM backend

Heatmap of Used Substitutions

23

Different DNN models require different substitutions.

Not covered in
TensorFlow

How many times a subst. is
used to optimize a DNN

Conclusion

TASO is the first DNN optimizer that automatically generates substitutions

• Less engineering effort

• Better performance

• Formal verification

https://github.com/jiazhihao/taso

• Support DNN models in ONNX, TensorFlow, and PyTorch

24

https://github.com/jiazhihao/taso

