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Current Rule-based DNN Optimizations
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Fuse conv + relu
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batch normalization

Fuse multi. convs
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Current Rule-based DNN Optimizations

Rule-based Optimizer

TensorFlow currently 
includes ~200 rules 

(~53,000 LOC)



Limitations of Rule-based Optimizations

When I turned on XLA (TensorFlow’s graph optimizer), the 
training speed is about 20% slower.

With XLA, my program is almost 2x slower than
without XLA

Robustness
Experts’ heuristics do not 

apply to all DNNs/hardware  
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Limitations of Rule-based Optimizations

Robustness
Experts’ heuristics do not 

apply to all DNNs/hardware  

Scalability 
New operators and graph 

structures require more rules

TensorFlow currently uses ~4K 
LOC to optimize convolution
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Limitations of Rule-based Optimizations

Robustness
Experts’ heuristics do not 

apply to all DNNs/hardware  

Scalability 
New operators and graph 

structures require more rules

Performance 
Miss subtle optimizations for

specific DNNs/hardware
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Motivating Example
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The final graph is 30% faster on V100 but 10% slower on K80.
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DNN Graph 
Optimizations

DNN 
Operators

Graph
Architectures

Hardware 
Backends

How should we address the complexity of 
designing DNN graph optimizations? 



TASO: Tensor Algebra SuperOptimizer

• Key idea: replace manually-designed graph optimizations with automated 
generation and verification of graph substitutions for deep learning

• Less engineering effort: 53,000 LOC for manual graph optimizations in 
TensorFlow → 1,400 LOC in TASO

• Better performance: outperform existing optimizers by up to 2.8x
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Graph Substitution
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TASO Workflow
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TASO Workflow
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Key Challenges

1. How to generate potential substitutions?

2. How to verify their correctness?

Graph fingerprints

Operator specifications + theorem prover
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Graph Substitution Generator

Enumerate all possible subgraphs up to a 
fixed size using available operators
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~66M graphs with up to 4 operators



Graph Substitution Generator
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with random input tensors
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Graph Substitution Generator
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Pairs of graphs with identical 
fingerprint are candidate substitutions
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Graph Substitution Generator
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TASO generates ~29,000 substitutions by 
enumerating graphs w/ up to 4 operators 

743 substitutions remain after applying 
pruning techniques to eliminate redundancy



Graph Substitution Verifier
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… Graph Subst. 
Verifier

…

Candidate
Substitutions

Verified
Substitutions

P1. conv is distributive 
over concatenation
P2. conv is bilinear
…
Pn. 

Operator 
Specifications
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Verification Workflow
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()*+ ", $%), ()*+(", $&
≠ 4567. ()*+ ", ()*,-. $%, $&
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Verification Effort
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TASO generates all 743 substitutions in 5 minutes, and 
verifies them against 43 operator properties in 10 minutes

Supporting a new operator requires a few hours of human 
effort to discover its properties

Operator specifications in TASO ≈ 1,400 LOC
Manual graph optimizations in TensorFlow ≈ 53,000 LOC  



Search-Based Graph Optimizer (MetaFlow [SysML19])

• Goal: applying verified substitutions to obtain an optimized graph

• Cost model
• Based on the sum of individual operators’ cost
• Measure the cost of each operator on hardware

• Cost-based backtracking search
• Backtrack local optimal solutions
• Optimizing a DNN model takes less than 10 minutes
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End-to-end Inference Performance (V100 GPU w/ cuDNN)

0

3

6

9

12

15

ResNet-50 NasNet-A ResNeXt-50 NasRNN BERT-Large

R
un

tim
e(

m
s)

TensorFlow TensorRT MetaFlow TASO

1.3x

1.0x
2.8x 1.4x

1.4x

22

Competitive on 
standard models

Larger speedups on
emerging models

Similar speedups on the TVM backend



Heatmap of Used Substitutions
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Different DNN models require different substitutions.

Not covered in 
TensorFlow

How many times a subst. is 
used to optimize a DNN



Conclusion

TASO is the first DNN optimizer that automatically generates substitutions

• Less engineering effort

• Better performance

• Formal verification

https://github.com/jiazhihao/taso

• Support DNN models in ONNX, TensorFlow, and PyTorch
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https://github.com/jiazhihao/taso

