
Janus: Risk based Planning of 
Network Changes in Data Centers 

Omid Alipourfard, Jiaqi Gao, Jeremie Koenig, 
Chris Harshaw, Amin Vahdat, Minlan Yu



Data centers are constantly evolving

- Software changes: 
- Bug fixes & feature releases

2

Changes are frequent:

- Apps need new features all the time.

- Exponential growth of traffic needs 
new design

- Hardware changes: 
- Device repairs & upgrades



Example: Transitioning to a Lossless Fabric

3

CP software 
upgrade (1)

Firmware 
update (2)

Line-card 
update (5)

Cluster 1Cluster 1Cluster 1 Cluster 1Cluster 2
Cluster 1Cluster 1Cluster 1Cluster 5

Deadline: 
Finish all in 2 months!

Google: 
58 changes per week

Bug fixes Security 
patches

Other 
upgrades



Applying a change is risky.

To apply a change, we (typically) drain the network devices.

4

Sw A

Sw 1 Sw N

Sw B

To upgrade switch A, we first 
move traffic away from it



Applying a change is risky.

To apply a change, we (typically) drain the network devices.

5

Sw A

Sw 1 Sw N

Sw B Sw A

Sw 1 Sw N

Sw B

Upgrade switch A

To upgrade switch A, we first 
move traffic away from it



Applying a change is risky.

Ongoing change can impact network customers.

6

Sw A

Sw 1 Sw N

Sw B

Less capacity headroom 
to absorb failures and traffic variations.

If Sw B fails
Sw 1, Sw2 and Sw N lose connectivity.

Even with warm reboots, we risk impacting customer traffic (e.g., buggy upgrades).

Sw B



Today, Operators follow rules of thumb.
- Microsoft reserves 1/4th of capacity for changes (power-of-4)
- Google sets an upper bound for capacity reduction  [SIGCOMM' 15]

7

No estimation or control of risks.  
- Slow upgrades: a long backlog of changes
- Fast upgrades: susceptible to impacting customers due to risks

State-of-the-art: Operators follow rules of thumb



Ignoring risks costs revenue and reputation

8

Uptime Refund

< 95% 100%

< 99% 30%

< 99.99% 10%

Service Level Agreement of 
Amazon compute service

2.5% Youtube 
views drop

30% Google Cloud 
Storage traffic drop

Azure: resources hosted in the 
region unreachable for 7 hours



How to plan network changes while 
minimizing the cost of risks?



Risk-based planning

Best plan for applying the change 
(minimize risk cost) 10

Risk-based planner

Change + Deadline



Risk-based planning

Best plan for applying the change 
(minimize risk cost) 11

Risk-based planner

Change + Deadline

Configs and Traffic
(Topology + routing)



Risk-based planning

Best plan for applying the change 
(minimize risk cost) 12

Risk-based planner

Change + Deadline

Configs and Traffic
(Topology + routing) Risks

E.g., failures, traffic model



Risk-based planning

Best plan for applying the change 
(minimize risk cost) 13

Risk-based planner

Change + Deadline
Risks

E.g., failures, traffic model

Cost functions

Configs and Traffic
(Topology + routing)



Planner should be adaptive

DC Configs and Traffic

We need to be adaptive to all the settings in different data centers

Change + Deadline

Risks

Cost functions

10% vs 90% utilization

private vs public workloads

different failure patterns



Planner should be adaptive: Modeling?

15

Modeling

We need to be adaptive to all the settings in different data centers

DC Configs and Traffic

Change + Deadline

Risks

Cost functions



Planner should be adaptive: Searching!

16

Modeling
Searching  

independent 
of all settings

We need to be adaptive to all the settings in different data centers

DC Configs and Traffic

Change + Deadline

Risks

Cost functions



Planner should be scalable

17

# of plans for a change is the # of ordered partitions 

In how many ways, can you schedule a change with 3 operations?

Example: change-set = {A, B, C}: 13 possible plans

{A}, {B}, {C}
{B}, {C}, {A}

. . .

{A, B}, {C}
{B}, {A, C}

. . .

{A, B, C}

subplan



18

Super 
exponential!

# of 
switches

Total # of 
plans 

(log scale)

55

 # of atoms in 
the universe 

3

13

~1000

# of possible plans for a change is the # of ordered partitions !!!

102726

Planner should be scalable in super exponential space



Leverage properties in large-scale DC networks

19

High degree of symmetry Many path choices

A1 A2 A3

C2 C4 C5 C6

A4 A5 A6

T1s T2s

C1 C3Core

Aggregate

Top of Rack (ToR)

Servers



Leverage symmetry to find equivalent subplans

20

A1 A2 A3

C1 C2 C3 C4 C5 C6

A4 A5 A6

T1s T2s

{C1}    ?    {C3}

Core

Aggregate

Top of Rack (ToR)

Two subplans are equivalent (with same cost) when they have 
equivalent traffic matrices, topology and routing



(1) Equivalent traffic matrices

21

C6

A6A1 A2 A3

C1 C2 C3 C4 C5 C6

A4 A5 A6

T1s T2s

A1 A2 A3

C1 C2 C3 C4 C5

A4 A5

T1s T2s

T1s T2s T1s T2s



(2) Equivalent topology

22

C6

A6A1 A2 A3

C1 C2 C3 C4 C5 C6

A4 A5 A6

T1s T2s

A1 A2 A3

C1 C2 C3 C4 C5

A4 A5

T1s T2s

A1 C2 A4

A2
C3

A5
C4

A2 C4 A5

A1
C1

A4
C2



(3) Equivalent routing

23

C6

A6A1 A2 A3

C1 C2 C3 C4 C5 C6

A4 A5 A6

T1s T2s

A1 A2 A3

C1 C2 C3 C4 C5

A4 A5

T1s T2s

100%

50%
each

100%

50%
each

A1 C2 A4

A2
C3

A5
C4

A2 C4 A5

A1
C1

A4
C2

How to find equivalent subplans?
Enumerate all subplans and check pairwise? No!



Use network automorphism to find renaming function

24
 f : swap the red switches and green switches

Note: connectivity and routing are kept the same

A1 A2 A3

C1 C2 C3 C4 C5 C6

A4 A5 A6

T1s T2s

● f preserves the three properties for the original network
○ Subplan A is equivalent to subplan f(A)

{C1} = f({C1}) = {C3}



Use network automorphism to find renaming function

25

● f preserves the three properties for the original network
○ Subplan A is equivalent to subplan f(A)

f1

f2
f1( f2)

○ Link the plan with the same cost in the search space



Path redundancy in data centers

26

Observation: 
● Data center network has many path choices between servers

○ E.g., 10 aggregate, 60 core switches in clos topology has 600 paths
● Many subplans have similar cost

○ Taking down 5/60 vs. 6/60 core switches, the resulting cost 
difference is small

Solution: Discretize the steps (0, 4, 8, ... 60)



Janus solves other challenges

● Calculating the impact of subplans is slow at large scale
○ Build a quotient network graph
○ 4100x acceleration in planning time

● Failure
○ Map each failure scenario to a pre-compute scenario

● Roll-back
● Delayed changes

27



Evaluation Setup

28

● Jupiter-like topology
○ 168 switches, 3840 servers

● Change
○ Upgrade all aggregate and core switches (72 switches)
○ Staged cost function based on Amazon SLA

● Traffic
○ Google Borg tenant arrival times
○ FB traffic traces

● Baseline
○ MRC (Maximize residual capacity)



29

MLU (maximum link utilization)

Cost

MRC
Janus

Lower variance at low MLU

33~71% cost using Janus

Evaluation: Benefits over MRC under different traffic

0



Evaluation: Adaptivity

Janus outperforms MRC under different network factors

● Cost functions

● Deadlines

● Data center scales

● Traffic settings

● Failures

● Rollback plans

30



Evaluation: scalability

31

Topology
(# servers)

Topology / Upgrade 
(# switches)

Planning time (20 
cores)

4,000 servers 168 / 72 switches 0.125 sec

16,000 servers 600 / 216 switches 0.503 sec

32,000 servers 1350 / 486 switches 1.795 sec

64,000 servers 2400 / 864 switches 8.75 sec



Conclusion

● Data centers are constantly changing
○ Fast network changes are critical for enabling quick evolution of 

data center
● Planning network changes should be

○ Adaptive to all kinds of network settings
○ Scalable to search the universe

● Janus leverages the high degree of symmetry and 
redundancy to plan network changes in real time

32



Thank you!

33

bug fix icon made by Pixel perfect from www.flaticon.com 
device replacement icon made by Eucalyp from www.flaticon.com

feature icon made by monkik from www.flaticon.com


